Air & Space CMMS Project Overview

Air Force Domain Analysis Team George Mason University The Institute of Public Policy

July 18, 1996

Air & Space CMMS Project Overview

- Background
- People
- Methodology
- Authoritative Sources
- Common Structure
- Common Syntax and Semantics
- Tools
- Process
- Validation
- Products

Air & Space CMMS Background

- Project period from July 1996 to April 97 (funding permitting)
 - Builds on previous work for ARPA and US Army CECOM
- Sponsored by Air Force Electronic Systems Center (ESC)
 - NASM funded AF domain analysis
 - Supports Joint CMMS
- Concepts and processes adopted by other programs
 - DMSO CMMS prototype
 - Army Functional Description of the Battlespace (FDB)

Air & Space CMMS The Team

- Dr. Bob Might (Principal Investigator)
 - GMU Professor in Modeling and Simulation Analysis and Design
 - AF Systems Engineer
 - AF Studies and Analysis
 - Thunder and TAM models
 - NDU Studies and Analysis Center
- Mike Metz (Team Chief)
 - Tactical Operations
 - Army Air Liaison and FAC
 - CHECKMATE Team
 - Command and Control Analysis
 - Tactical nuclear and conventional weapons analysis
 - OSD Net Assessment
 - RSAS Model User Group Chairman
 - Research Director

Air & Space CMMS The Team (continued)

- Martin Bredeck (Systems Engineer)
 - AF Studies and Analysis
 - Systems Engineer and Database Expert
 - Object-Oriented Analysis and Design
- Mike Cosgrove (Consultant)
 - Systems Engineer
 - Thunder model expert
- Rick Parker (Subject Matter Expert)
 - Tactical Fighter and SOF Operations
 - Command and Control Analysis
 - International Military Assistance

Air & Space CMMS Methodology

- Processes described by Domain/Subject Matter Experts in text narrative based on experience and authoritative sources
 - Doctrine traceability
- Processes captured in common structure with common syntax and semantics using systems engineering tool
- Products made available for review on WWW
 - At ESC, GMU/TIPP and IMC
- Validation process includes
 - Visits to Subject Matter Experts, other Command and Control analysts, and exercises (Blue Flag)
 - Seminars hosted at GMU
 - Not official VV&A validation
- Still evolving and improving
- Tied to ARPA, DMSO and converging baselines of other CMMS projects

Air & Space CMMS Examples of Authoritative Sources

Joint Doctrine

- JP 3-0 Doctrine for Joint Operations
- JP 3-03 (Test) Doctrine for Joint Interdiction Operations
- JP 3-56.1 Command and Control for Joint Air Operations
- JP 3-09.3 Joint Tactics, Techniques, and Procedures for Close Air Support

Service Doctrine

- AFM 1-1 Basic Aerospace Doctrine of the United States Air Force(Vols I and II)
- AFDD 30 Airlift Operations

Service Publications

- AF/XO's JFACC Primer
- ACCI 13-AOC Volume 3, Operational Procedures--Air Operations Center

Air & Space CMMS Common Structure

- Provides Framework for Multiple User Analysis
 - Conceptual Model for Simulation (CMODSIM)
 - Conceptual Model of Command and Control (CMODC2)
 - Conceptual Model for Simulation Execution (CMODSIMEX)
- Assists in Validation Process with Domain and Subject Matter Experts

Air & Space CMMS CMODSIM (level 0)

Air & Space CMMS CMODSIM (level 1)

Air & Space CMMS CMODSIM (level 2)

Air & Space CMMS Common Structure Conceptual Model of Command and Control (CMODC2)

Air & Space CMMS Common Syntax and Semantics

- Using common syntax and semantics provides process descriptions with greater validity
- Speeds integration and validation of diverse components developed by different teams
- Assists in validation process with DEs/SMEs
- Will foster automatic code generation

Air & Space CMMS Systems Engineering Tool

- RDD-100
- Provides ERA behavioral database
 - Behavior Diagrams
 - IDEF0
 - Nsquared
 - DFD
 - Functional Block Diagrams
 - Real World Object Model
- Diagrams readability improves validation process
- Dynamically verifiable

Air & Space CMMS Key Observations

- Combat Models and Simulations are a representation of highly coupled, **complex processes** that are performed by multiple, heterogeneous (yet interacting) systems
- The basic or core processes in combat are **relatively stable**
- The systems that make combat processes a reality are often interchangeable and constantly changing

Conclusion

Conceptual Models of combat should focus on the combat processes -- letting these drive the object classification and object models

Air & Space CMMS Conceptual Models

- Conceptual Models are the first abstraction of the real world:
 - they MUST facilitate communication between Subject Matter Experts (SMEs) and Simulation Developers
 - they MUST be simulation and simulation method independent (i.e. they must support the development of either process oriented or object oriented simulations)

Air & Space CMMS Mission Space is comprised of Missions

Incrementally fill out the mission space until all AFM 1-1 missions are represented, including MOOTW

Air & Space CMMS Added Value of Behavioral Database

- Enhanced user manuals
- Configuration management
- Model/Simulation V&V
- Simulation migration management

Air & Space CMMS Validation Process

- Products posted on ESC server, GMU/TIPP server, and IMC server for access in Adobe Acrobat .pdf format and Postscript format
 - ESC (www.NASM.hanscom.af.mil/NASM--password is 1rolex)
 - GMU/TIPP Homepage (ralph.gmu.edu)
 - IMC (ftp to kelly.imcva.com)
- Visits to Domain Experts and SMEs
 - ACC DO
 - ACC DR
 - Air Staff
- Exercises
 - Blue Flag
- Validation Seminars at GMU/TIPP

Air & Space CMMS Validation Results to Date

- JFACC processes, with minor modification, represent activities of JFACC staff as practiced in Blue Flag exercise
 - Some SME face validation
 - Planned GMU validation seminar in Fall 96
- Tactical Airlift has been adjusted to meet requirements of ACC/DOOM (Tactical Airlift staff)
- Generic Mission and Air Interdiction validation process ongoing
 - Some SME face validation
 - Planned GMU validation seminars in Fall 96

Air & Space CMMS Work Completed

- JFACC Processes
 - Interfaces with JFC and other components
 - Air Operations Center processes
 - ATO planning, production and execution
- Generic Mission Processes
 - Generic aspects of air missions
- Air Interdiction Mission Process
 - Specific air mission
 - Multiple views
 - Narrative Text, Behavior, and IDEF0 Activity
- Tactical Airlift Processes

Air & Space CMMS Work In Progress

- Specific Air Missions
 - Air Interdiction Object View
 - CAS Text narrative view
- Integration of Command and Control with Specific Mission Processes and Tactical Airlift

Air & Space CMMS Work Planned

- Specific Air Missions
 - Electronic Warfare
 - Air Superiority
 - Tactical Reconnaissance
 - Remaining missions as schedule permits
- Total Integration
 - All specific air missions under theater operational air command and control structure
- Continue Informal Validation Process
 - Fall 96 seminar series at GMU

Air & Space CMMS Other Activities

- Processes, methodology, semantics and syntax also being used for US Army's Functional Description of the Battlespace (FDB)
 - Army behavior database for FDB (IMC)
 - Task-Input-Output matrices
 - RDD-100 behavior diagrams
- DMSO CMMS Prototype
 - Developers using Air Interdiction products (developed at GMU and IMC) as air portion of joint interdiction example
 - DMSO CMMS common semantics/syntax (IMC)

Air & Space CMMS **Common CMMS Process** Manuals RDD-100 **SMEs** GUI Other KA/KE MS **CASE** Tools Access Database Rational ROSE Common **CMMS**

Air & Space CMMS Air Force Domain Analysis

Describes behavior during air combat and combat support operations:

- Command and Control (Cognitive Processes)
 - Strategic
 - Theater or Operational
 - Tactical
 - System
- Execution (Physical Processes)
 - Communicate
 - Sense
 - Move
 - Engage

Air & Space CMMS

Illustrative Common Semantics for AF Domain Command and Control

- Gather Information
 - -- Gather
 - -- Classify
 - -- Highlight
 - -- Find
 - -- Combine
 - -- Merge
 - -- Parse
 - -- Sort
 - -- Check
 - -- Receive
 - -- File
 - -- Catalogue

- Review/Assess Requirements and Resources
 - Identify
 - Determine
 - Restate
 - Prioritize
 - Estimate
 - Analyze
 - Review
 - Update
 - Prepare

Air & Space CMMS

Illustrative Common Semantics for AF Domain Command and Control

- Prepare Alternative Plans
 - Develop
 - Recommend
 - Process
 - Array
 - Detail
 - Compare
 - Examine
 - Contrast
 - Investigate
 - Assess
 - Integrate
 - Plan
 - Match
 - Calculate

Direct Operations

- Choose
- Command
- Evaluate
- Issue
- Implement
- Direct
- Redirect
- Allocate
- Apportion
- Assign

- Appoint
- Control
- Decide
- Secure
- Order
- Give
- Coordinate
- Approve
- Select
- Acquire
- Obtain

Air & Space CMMS

Illustrative Common Semantics for AF Domain Command and Control (Multiuse)

- -- Screen
- -- Integrate
- -- Initiate
- -- Determine
- -- Restate
- -- Determine
- -- Identify
- -- Study
- -- Update

Air & Space CMMS Illustrative Common Semantics for AF Domain

Dynamics

- Execute Combat
 - Sense
 - --
 - --
 - Move
 - __
 - --
 - Engage
 - --
 - __
 - Communicate
 - --
 - --

RDD-100's Current Object View

- Support for Object Types is provided in multiple views
 - Object editing and browsing
 - Classification view
 - Composition view
 - Association view
- The Integrated System Model is developed in different perspectives, including ...
 - Real World Object perspective, specifying inheritance and processes
 - Behavior Model perspective, specifying external, observable behavior of processes
- Object are then used in different Integrated System Models
- RDD-100 handles the management of originating and derived requirements

Ascent Logic's Plan for RDD-100's Object View

- An Object-Oriented System Engineering methodology that defines the system (or process) as a collection of collaborating (interacting) objects that achieve a common purpose
- Uses "Best of Class" OO representation:
 - Rumbaugh's Object Structure notation
 - Jacobson's Use Case representation to behavior
 - Odell's representation for information engineering
- Commitment to support the leading industry methodology as the market demands it
- Currently found to be extremely compatible with the Unified Method
- Fundamentally based on OO database management; capable of evolution consistent with this paradigm

Examples of Object Classes in the Unified Method Generic Air Mission Object Inheritance Diagram

